We propose a novel Bayesian method to solve the maximization of a time-dependent expensive-to-evaluate stochastic oracle. We are interested in the decision that maximizes the oracle at a finite time horizon, given a limited budget of noisy evaluations of the oracle that can be performed before the horizon. Our recursive two-step lookahead acquisition function for Bayesian optimization makes nonmyopic decisions at every stage by maximizing the expected utility at the specified time horizon. Specifically, we propose a generalized two-step lookahead framework with a customizable \emph{value} function that allows users to define the utility. We illustrate how lookahead versions of classic acquisition functions such as the expected improvement, probability of improvement, and upper confidence bound can be obtained with this framework. We demonstrate the utility of our proposed approach on several carefully constructed synthetic cases and a real-world quantum optimal control problem.


翻译:我们建议一种新颖的贝叶斯方法,以解决最大限度地实现一个具有时间依赖性、费用昂贵、需要评估的神器。我们感兴趣的是,鉴于在地平线之前能够对神器进行吵闹评估的预算有限,在有限的时间范围内使神器最大化的决定。我们为巴伊斯人优化而反复形成的两步式视觉获取功能,通过在规定的时间范围内最大限度地发挥预期的效用,在每个阶段都作出非显性的决定。具体地说,我们提议了一个通用的两步式的外观框架,其功能可定制化地使用户能够界定其效用。我们用这个框架来说明如何取得典型的获得功能,如预期的改进、改进的可能性和最高信任度。我们展示了我们针对几个精心构建的合成案例和现实世界量子最佳控制问题的拟议方法的效用。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月8日
Quantum Natural Gradient for Variational Bayes
Arxiv
0+阅读 · 2021年7月8日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员