We propose a novel Bayesian method to solve the maximization of a time-dependent expensive-to-evaluate stochastic oracle. We are interested in the decision that maximizes the oracle at a finite time horizon, given a limited budget of noisy evaluations of the oracle that can be performed before the horizon. Our recursive two-step lookahead acquisition function for Bayesian optimization makes nonmyopic decisions at every stage by maximizing the expected utility at the specified time horizon. Specifically, we propose a generalized two-step lookahead framework with a customizable \emph{value} function that allows users to define the utility. We illustrate how lookahead versions of classic acquisition functions such as the expected improvement, probability of improvement, and upper confidence bound can be obtained with this framework. We demonstrate the utility of our proposed approach on several carefully constructed synthetic cases and a real-world quantum optimal control problem.
翻译:我们建议一种新颖的贝叶斯方法,以解决最大限度地实现一个具有时间依赖性、费用昂贵、需要评估的神器。我们感兴趣的是,鉴于在地平线之前能够对神器进行吵闹评估的预算有限,在有限的时间范围内使神器最大化的决定。我们为巴伊斯人优化而反复形成的两步式视觉获取功能,通过在规定的时间范围内最大限度地发挥预期的效用,在每个阶段都作出非显性的决定。具体地说,我们提议了一个通用的两步式的外观框架,其功能可定制化地使用户能够界定其效用。我们用这个框架来说明如何取得典型的获得功能,如预期的改进、改进的可能性和最高信任度。我们展示了我们针对几个精心构建的合成案例和现实世界量子最佳控制问题的拟议方法的效用。