This paper presents a systematic investigation on codebook design of sparse code multiple access (SCMA) communication in downlink satellite Internet-of-Things (S-IoT) systems that are generally characterized by Rician fading channels. To serve a huge number of low-end IoT sensors, we aim to develop enhanced SCMA codebooks which enable ultra-low decoding complexity, while achieving good error performance. By analysing the pair-wise probability in Rician fading channels, we deduce the design metrics for multi-dimensional constellation construction and sparse codebook optimization. To reduce the decoding complexity, we advocate the key idea of projecting the multi-dimensional constellation elements to a few overlapped complex numbers in each dimension, called low projection (LP). We consider golden angle modulation (GAM), thus the resultant multi-dimensional constellation is called LPGAM. With the proposed design metrics and based on LPGAM, we propose an efficient approach of multi-stage optimization of sparse codebooks. Numerical and simulation results show the superiority of the proposed LP codebooks (LPCBs) in terms of decoding complexity and error rate performance. In particular, some of the proposed LPCBs can reduce the decoding complexity by 97\% compared to the conventional codebooks, and own the largest minimum Euclidean distance among existing codebooks. The proposed LPCBs are available at \url{https://github.com/ethanlq/SCMA-codebook}.


翻译:本文展示了对稀有代码多存取(SCMA)系统代码设计进行系统化调查,这些系统通常以Rician fading 频道为特征,在卫星 Internet-things(S-IotT)系统下行链中以Rician fading 频道为特征。为了为大量低端 IoT 传感器服务,我们的目标是开发强化的SCMA 代码手册,允许超低解码复杂度,同时取得良好的差错性能。我们通过分析Rician 淡化频道中的双向概率,推断多维星座构建和稀薄代码优化的多维码(SC SC) 。为了减少解码复杂性,我们提倡将多维星系元素投射到每个层面的几个重叠的复杂数字中的关键理念。 我们考虑的是金角调调调调色(GAM),因此结果的多维系星座星座也被称为LPGMA。 我们提出一个高效的多阶段优化方法,以稀薄代码为基础。 Numericalal和模拟结果显示拟议的LPC-Bthan Cental code (LPCBB) 将某些LPCthan commex-commissional decol decodeal) 的精密/ decodeal decodeal desc-deal decals decal decol.

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员