Limited computing resources of internet-of-things (IoT) nodes incur prohibitive latency in processing input data. This triggers new research opportunities toward task offloading systems where edge servers handle intensive computations of IoT devices. Deploying the computing servers at existing base stations may not be sufficient to support IoT nodes operating in a harsh environment. This requests mobile edge servers to be mounted on unmanned aerial vehicles (UAVs) that provide on-demand mobile edge computing (MEC) services. Time-varying offloading demands and mobility of UAVs need a joint design of the optimization variables for all time instances. Therefore, an online decision mechanism is essential for UAV-aided MEC networks. This article presents an overview of recent deep reinforcement learning (DRL) approaches where decisions about UAVs and IoT nodes are taken in an online manner. Specifically, joint optimization over task offloading, resource allocation, and UAV mobility is addressed from the DRL perspective. For the decentralized implementation, a multi-agent DRL method is proposed where multiple intelligent UAVs cooperatively determine their computations and communication policies without central coordination. Numerical results demonstrate that the proposed decentralized learning strategy is superior to existing DRL solutions. The proposed framework sheds light on the viability of the decentralized DRL techniques in designing self-organizing IoT networks.
翻译:在处理输入数据的过程中,有限的互联网节点计算资源产生令人望而却步的悬浮。 这触发了新的研究机会,让边缘服务器处理IOT设备的密集计算。 在现有的基地站部署计算机服务器可能不足以支持在恶劣环境中运作的IOT节点。 这要求将移动边缘服务器安装在提供即时移动边缘计算(MEC)服务的无人驾驶飞行器(UAVs)上。 时间推移UAVs的卸载需求和流动性需要联合设计所有时间的优化变量。 因此,一个在线决定机制对于UAV辅助的MEC网络至关重要。 本文概述了最近深入强化学习(DRL)的方法,因为有关UAVs和IOT节点的决定是以在线方式进行的。 具体地说,对任务卸载、资源分配和UAVS流动的联合优化是从DL角度出发的。 关于分散应用实施,建议多剂DRL方法,让多个智能UAVs合作决定其分散式计算和通信网络的自我定位,而没有中央化的计算和分散式设计策略。