Deploying deep neural networks~(DNNs) on edge devices provides efficient and effective solutions for the real-world tasks. Edge devices have been used for collecting a large volume of data efficiently in different domains. DNNs have been an effective tool for data processing and analysis. However, designing DNNs on edge devices is challenging due to the limited computational resources and memory. To tackle this challenge, we demonstrate Object Detection System for Edge Devices~(BED) on the MAX78000 DNN accelerator. It integrates on-device DNN inference with a camera and an LCD display for image acquisition and detection exhibition, respectively. BED is a concise, effective and detailed solution, including model training, quantization, synthesis and deployment. The entire repository is open-sourced on Github, including a Graphical User Interface~(GUI) for on-chip debugging. Experiment results indicate that BED can produce accurate detection with a 300-KB tiny DNN model, which takes only 91.9 ms of inference time and 1.845 mJ of energy. The real-time detection is available at YouTube.
翻译:在边缘装置上部署深神经网络~(DNN)为现实世界任务提供了高效和有效的解决方案。 边缘装置被用于在不同领域有效收集大量数据。 DNN是数据处理和分析的有效工具。 但是,由于计算资源和记忆有限,在边缘装置上设计DNN具有挑战性。 为了应对这一挑战,我们在 MAX78000 DNN 加速器上演示了边缘装置的物体探测系统。 它将DNN 的假设与摄像头和LCD显示结合起来,分别用于图像获取和探测展览。 BED是一个简洁、有效和详细的解决方案,包括模型培训、四分化、合成和部署。 整个储存库在Github 上开源开放, 包括用于芯贝调试的图形用户界面~(GUI) 。 实验结果显示, BEDD能够用300-K小DNN 模型产生准确的检测,该模型仅需要91.9米的推后时间和1.845米的能量。