Departing from the classic paradigm of data-centric designs, the 6G networks for supporting edge AI features task-oriented techniques that focus on effective and efficient execution of AI task. Targeting end-to-end system performance, such techniques are sophisticated as they aim to seamlessly integrate sensing (data acquisition), communication (data transmission), and computation (data processing). Aligned with the paradigm shift, a task-oriented over-the-air computation (AirComp) scheme is proposed in this paper for multi-device split-inference system. In the considered system, local feature vectors, which are extracted from the real-time noisy sensory data on devices, are aggregated over-the-air by exploiting the waveform superposition in a multiuser channel. Then the aggregated features as received at a server are fed into an inference model with the result used for decision making or control of actuators. To design inference-oriented AirComp, the transmit precoders at edge devices and receive beamforming at edge server are jointly optimized to rein in the aggregation error and maximize the inference accuracy. The problem is made tractable by measuring the inference accuracy using a surrogate metric called discriminant gain, which measures the discernibility of two object classes in the application of object/event classification. It is discovered that the conventional AirComp beamforming design for minimizing the mean square error in generic AirComp with respect to the noiseless case may not lead to the optimal classification accuracy. The reason is due to the overlooking of the fact that feature dimensions have different sensitivity towards aggregation errors and are thus of different importance levels for classification. This issue is addressed in this work via a new task-oriented AirComp scheme designed by directly maximizing the derived discriminant gain.


翻译:与典型的以数据为中心的设计模式脱节,支持边缘AI的6G网络在支持边缘AI的6G网络中,采用了侧重于高效益和高效率执行AI任务的任务导向技术。针对端对端系统性能,这些技术十分复杂,因为它们旨在无缝地整合遥感(数据获取)、通信(数据传输)和计算(数据处理)。与范式转变一致,本文件提出了面向任务的超空计算(AirComp)办法,供多角度分解系统使用。在考虑的系统中,从设备实时噪音感官数据中提取的以任务为导向的敏感矢量矢量矢量,通过利用多用户频道的波形超定位,在空中对空进行汇总。然后,将服务器收到的汇总性能输入一个推导模型,结果用于决定或控制动作。设计面向偏差的Aircompority(Aircommal),在边缘服务器上传输的预校正校正变校正,以最佳的方式控制合并误差,并尽量提高振度的精确度问题。在空中分类中,通过测度上测度的精确度,通过测测测度,可以测度,通过测测度,通过测测测测度,通过测度测度,将测度测度测测测度,将测度测度测度测度测度测度,测测测测测度,测度,测度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月22日
Arxiv
0+阅读 · 2022年12月21日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员