Commercial depth sensors usually generate noisy and missing depths, especially on specular and transparent objects, which poses critical issues to downstream depth or point cloud-based tasks. To mitigate this problem, we propose a powerful RGBD fusion network, SwinDRNet, for depth restoration. We further propose Domain Randomization-Enhanced Depth Simulation (DREDS) approach to simulate an active stereo depth system using physically based rendering and generate a large-scale synthetic dataset that contains 130K photorealistic RGB images along with their simulated depths carrying realistic sensor noises. To evaluate depth restoration methods, we also curate a real-world dataset, namely STD, that captures 30 cluttered scenes composed of 50 objects with different materials from specular, transparent, to diffuse. Experiments demonstrate that the proposed DREDS dataset bridges the sim-to-real domain gap such that, trained on DREDS, our SwinDRNet can seamlessly generalize to other real depth datasets, e.g. ClearGrasp, and outperform the competing methods on depth restoration with a real-time speed. We further show that our depth restoration effectively boosts the performance of downstream tasks, including category-level pose estimation and grasping tasks. Our data and code are available at https://github.com/PKU-EPIC/DREDS
翻译:商业深度传感器通常会产生噪音和缺失的深度,特别是在光学和透明的物体上,这给下游深度或点云性任务提出了关键问题。为了缓解这一问题,我们提议建立一个强大的RGBD聚变网络SwinDRNet,以进行深度修复。我们进一步提议Domain Randization-Enhanced深度模拟系统(DREDS),以模拟动态立体深度系统,使用物理成像和生成大型合成数据集,其中包含130K光现实 RGB图像及其模拟深度,并带有现实感应噪音。为了评估深度恢复方法,我们还设计了一个真实世界数据集,即STD,其中捕捉了由50个物体组成的30个杂乱的场景,这些天体具有不同的光学、透明、可扩散的材料。实验表明,拟议的DREDS数据集将模拟到真实域间差距连接起来,因此,在DREDS上培训的S,我们的SwinDRNet可以无缝地概括到其他真实深度数据集,例如:Clear Grest Grestsp,以及超越了深度恢复深度的方法,包括实际-PIC/CRE/CRE的深度任务。我们进一步展示了我们的深度/CRE/CRFDRU 的深度任务,我们现有的深度和深度任务。