This paper presents a new approach to estimation and inference in panel data models with interactive fixed effects, where the unobserved factor loadings are allowed to be correlated with the regressors. A distinctive feature of the proposed approach is to assume a nonparametric specification for the factor loadings, that allows us to partial out the interactive effects using sieve basis functions to estimate the slope parameters directly. The new estimator adopts the well-known partial least squares form, and its $\sqrt{NT}$-consistency and asymptotic normality are shown. Later, the common factors are estimated using principal component analysis (PCA), and the corresponding convergence rates are obtained. A Monte Carlo study indicates good performance in terms of mean squared error. We apply our methodology to analyze the determinants of growth rates in OECD countries.
翻译:本文介绍了在具有交互固定效应的小组数据模型中进行估算和推断的新方法,允许未观察到的因数负荷与递减因素相联系,拟议方法的一个显著特点是假设因数负荷具有非参数性规格,从而使我们能够利用筛选功能来直接估计坡度参数,从而部分排除交互效应。新的估计数字采用众所周知的局部最小方形,并显示其$\sqrt{NT}$的连贯性和无反应性正常性。随后,共同因素使用主要构成部分分析估算,并得出相应的趋同率。蒙特卡洛研究显示,平均平方差的成绩良好。我们运用我们的方法分析经合组织国家增长率的决定因素。