Object picking in cluttered scenes is a widely investigated field of robot manipulation, however, ambidextrous robot picking is still an important and challenging issue. We found the fusion of different prehensile actions (grasp and suction) can expand the range of objects that can be picked by robot, and the fusion of prehensile action and nonprehensile action (push) can expand the picking space of ambidextrous robot. In this paper, we propose a "Push-Grasp-Suction" (PGS) integrated network for ambidextrous robot picking through the fusion of different prehensile actions and the fusion of prehensile action and nonprehensile aciton. The prehensile branch of PGS takes point clouds as input, and the 6-DoF picking configuration of grasp and suction in cluttered scenes are generated by multi-task point cloud learning. The nonprehensile branch with depth image input generates instance segmentation map and push configuration, cooperating with the prehensile actions to complete the picking of objects out of single-arm space. PGS generalizes well in real scene and achieves state-of-the-art picking performance.
翻译:在杂乱的场景中选取物体是一个广泛调查的机器人操纵领域,然而,杂交式机器人选取仍然是一个重要而具有挑战性的问题。我们发现,各种预发性行动(悬浮和吸附)的结合可以扩大机器人可以选取的物体范围,而预发性行动和非刺激性行动(悬浮)的结合可以扩大扰动性机器人的选取空间。在本文中,我们提议建立一个“普什-格拉普-抽吸”综合网络,通过不同先发性行动的结合以及先发性行动和无先发性行动的结合来采集非刺激性机器人。PGS的先发性分支可以将点云作为输入,而布满布满的场景中的抓捕和抽吸的6-DoF组合是由多层点的云学习产生的。带有深度图像输入的非先发性分支生成实例分割图和推动配置,与先发性动作合作,完成选择单臂运行的物体的选取过程。PGS在一般状态下,并实现总状态。