We establish a general Bernstein--von Mises theorem for approximately linear semiparametric functionals of fractional posterior distributions based on nonparametric priors. This is illustrated in a number of nonparametric settings and for different classes of prior distributions, including Gaussian process priors. We show that fractional posterior credible sets can provide reliable semiparametric uncertainty quantification, but have inflated size. To remedy this, we further propose a \textit{shifted-and-rescaled} fractional posterior set that is an efficient confidence set having optimal size under regularity conditions. As part of our proofs, we also refine existing contraction rate results for fractional posteriors by sharpening the dependence of the rate on the fractional exponent.
翻译:我们为基于非参数前置的分数后继体分布的近线性半参数功能建立了一个通用伯恩斯坦-冯米斯理论体系。 在许多非参数设置中和以前分布的不同类别( 包括高西亚进程前期)中, 都说明了这一点。 我们显示, 分数后继体可以提供可靠的半参数不确定性量化, 但却有膨胀的尺寸。 为了纠正这一点, 我们还进一步提议了一个 \ textit{ 转换和重新标定} 分数后继体数集, 这是一种在正常条件下具有最佳规模的有效信心集。 作为我们证据的一部分, 我们还通过提高分数后继体对分数速率的依赖性来改进现有分数后继体收缩率结果。