In this paper, we are concerned with a operator splitting scheme for linear fractional and fractional degenerate stochastic conservation laws driven by multiplicative Levy noise. More specifically, using a variant of classical Kruzkov's doubling of variable approach, we show that the approximate solutions generated by the splitting scheme converges to the unique stochastic entropy solution of the underlying problems.Finally, the convergence analysis is illustrated by several numerical examples.
翻译:在本文中,我们对由多种重复性利物化噪音驱动的线性分数和分数性退化的随机保护法的操作者分裂计划感到关切。 更具体地说,我们使用古典的克鲁兹科夫变数法翻倍的变数法的变数法变式,表明分裂计划产生的近似解决办法与根本问题独特的随机共生的共生解决办法相融合。 最后,通过几个数字例子来说明趋同分析。</s>