The constrained synchronization problem (CSP) asks for a synchronizing word of a given input automaton contained in a regular set of constraints. It could be viewed as a special case of synchronization of a discrete event system under supervisory control. Here, we study the computational complexity of this problem for the class of sparse regular constraint languages. We give a new characterization of sparse regular sets, which equal the bounded regular sets, and derive a full classification of the computational complexity of CSP for letter-bounded regular constraint languages, which properly contain the strictly bounded regular languages. Then, we introduce strongly self-synchronizing codes and investigate CSP for bounded languages induced by these codes. With our previous result, we deduce a full classification for these languages as well. In both cases, depending on the constraint language, our problem becomes NP-complete or polynomial time solvable.
翻译:限制同步问题( CSP) 要求将一个输入的自动自动图单词同步, 包含在一组常规约束中。 这可以被视为一个在监管控制下对一个离散事件系统同步的特殊案例 。 在这里, 我们研究这个问题对于稀少的常规约束语言的计算复杂性 。 我们给稀疏的常规约束语言组重新定性, 与约束的常规套件相等, 并得出一个完整分类的 CSP 用于字母约束的常规约束语言的计算复杂性, 并适当包含严格约束的常规语言 。 然后, 我们引入强烈的自我同步代码, 并调查由这些代码引发的封闭语言的 CSP 。 我们以先前的结果推断出这些语言的全面分类 。 在这两种情况下, 根据约束语言, 我们的问题都变得NP- 完整或 多元时间可溶解 。