Credit scoring is vital in the financial industry, assessing the risk of lending to credit card applicants. Traditional credit scoring methods face challenges with large datasets and data imbalance between creditworthy and non-creditworthy applicants. This paper introduces an advanced machine learning and deep learning framework to improve the accuracy and reliability of credit card approval predictions. We utilized extensive datasets of user application records and credit history, implementing a comprehensive preprocessing strategy, feature engineering, and model integration. Our methodology combines neural networks with an ensemble of base models, including logistic regression, support vector machines, k-nearest neighbors, decision trees, random forests, and gradient boosting. The ensemble approach addresses data imbalance using Synthetic Minority Over-sampling Technique (SMOTE) and mitigates overfitting risks. Experimental results show that our integrated model surpasses traditional single-model approaches in precision, recall, F1-score, AUC, and Kappa, providing a robust and scalable solution for credit card approval predictions. This research underscores the potential of advanced machine learning techniques to transform credit risk assessment and financial decision-making.
翻译:暂无翻译