Local feature matching is challenging due to textureless and repetitive patterns. Existing methods focus on using appearance features and global interaction and matching, while the importance of geometry priors in local feature matching has not been fully exploited. Different from these methods, in this paper, we delve into the importance of geometry prior and propose Structured Epipolar Matcher (SEM) for local feature matching, which can leverage the geometric information in an iterative matching way. The proposed model enjoys several merits. First, our proposed Structured Feature Extractor can model the relative positional relationship between pixels and high-confidence anchor points. Second, our proposed Epipolar Attention and Matching can filter out irrelevant areas by utilizing the epipolar constraint. Extensive experimental results on five standard benchmarks demonstrate the superior performance of our SEM compared to state-of-the-art methods. Project page: https://sem2023.github.io.
翻译:由于纹理不清和重复的模式,局部特征匹配具有挑战性。现有方法注重使用外观特征和全局交互和匹配,而局部特征匹配中几何先验的重要性尚未被充分利用。与这些方法不同,本文深入探讨了几何先验的重要性,并提出了适用于局部特征匹配的结构化极线匹配器(Structured Epipolar Matcher,缩写为SEM),它可以通过迭代匹配方式利用几何信息。所提出的模型具有以下几个优点。第一,我们提出的结构化特征提取器可以建模像素与高置信度锚点之间的相对位置关系。第二,我们提出的极线注意力和匹配器可以利用极线约束过滤掉无关区域。在五个标准基准测试上的广泛实验结果表明,相比于现有的最先进方法,我们的SEM具有更优越的性能。项目页面:https://sem2023.github.io。