Background: The COVID-19 pandemic has affected our society and human well-being in various ways. In this study, we investigate how the pandemic has influenced people's emotions and psychological states compared to a pre-pandemic period using real-world data from social media. Method: We collected Reddit social media data from 2019 (pre-pandemic) and 2020 (pandemic) from the subreddits communities associated with eight universities. We applied the pre-trained Robustly Optimized BERT pre-training approach (RoBERTa) to learn text embedding from the Reddit messages, and leveraged the relational information among posted messages to train a graph attention network (GAT) for sentiment classification. Finally, we applied model stacking to combine the prediction probabilities from RoBERTa and GAT to yield the final classification on sentiment. With the model-predicted sentiment labels on the collected data, we used a generalized linear mixed-effects model to estimate the effects of pandemic and in-person teaching during the pandemic on sentiment. Results: The results suggest that the odds of negative sentiments in 2020 (pandemic) were 25.7% higher than the odds in 2019 (pre-pandemic) with a $p$-value $<0.001$; and the odds of negative sentiments associated in-person learning were 48.3% higher than with remote learning in 2020 with a $p$-value of 0.029. Conclusions: Our study results are consistent with the findings in the literature on the negative impacts of the pandemic on people's emotions and psychological states. Our study contributes to the growing real-world evidence on the various negative impacts of the pandemic on our society; it also provides a good example of using both ML techniques and statistical modeling and inference to make better use of real-world data.


翻译:背景:COVID-19大流行以各种方式影响我们的社会和人类福祉。在本研究中,我们调查了该流行病如何影响人们的情感和心理状态,而与使用社交媒体提供的真实世界数据相比,该流行病对人口情绪和心理状态产生了影响。方法:我们收集了2019年(大范围前)和2020年(大范围)次编辑社区与八所大学有关的社交媒体数据。我们采用了预先培训的强力优化的BERT预培训方法(ROBERTA)来学习从Reddit信息中嵌入的文字,并利用已张贴信息之间的关系信息来培训一个用于情绪分类的图形关注网络(GAT)。最后,我们采用了模型堆叠式,将RoBERTA和GAT的预测概率合并起来,以产生对情绪的最后分类。在所收集的数据上,我们采用了模型化的情绪标签,我们使用了一个普遍的线性混合效应模型来估计大流行病和在大流行病期间的人际教学的影响。结果:结果显示,2020年的负值与直位观察网络值之间的负值概率比20.19数据更接近,我们的实际值为20。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员