The constant growth in the number of malware - software or code fragment potentially harmful for computers and information networks - and the use of sophisticated evasion and obfuscation techniques have seriously hindered classic signature-based approaches. On the other hand, malware detection systems based on machine learning techniques started offering a promising alternative to standard approaches, drastically reducing analysis time and turning out to be more robust against evasion and obfuscation techniques. In this paper, we propose a malware taxonomic classification pipeline able to classify Windows Portable Executable files (PEs). Given an input PE sample, it is first classified as either malicious or benign. If malicious, the pipeline further analyzes it in order to establish its threat type, family, and behavior(s). We tested the proposed pipeline on the open source dataset EMBER, containing approximately 1 million PE samples, analyzed through static analysis. Obtained malware detection results are comparable to other academic works in the current state of art and, in addition, we provide an in-depth classification of malicious samples. Models used in the pipeline provides interpretable results which can help security analysts in better understanding decisions taken by the automated pipeline.


翻译:另一方面,基于机器学习技术的恶意软件检测系统开始为标准方法提供有希望的替代方法,极大地缩短了分析时间,结果发现对规避和混淆技术的打击更加有力。在本文件中,我们提议了一种恶意软件分类管道,能够对视窗便携式可执行文件进行分类。根据输入的PE样本,它首先被归类为恶意或良性。如果恶意,管道进一步分析,以确定其威胁类型、家庭和行为。我们在开放源数据集EMBER上测试了拟议的管道,该管道包含大约100万个PE样本,通过静态分析加以分析。获得的恶意软件检测结果与目前状态下的其他学术工作相似,此外,我们提供了对恶意样品的深入分类。在管道中使用的模型提供了可解释的结果,有助于安全分析员更好地了解自动管道作出的决定。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
35+阅读 · 2021年8月2日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员