Virtual network embedding (VNE) algorithm is always the key problem in network virtualization (NV) technology. At present, the research in this field still has the following problems. The traditional way to solve VNE problem is to use heuristic algorithm. However, this method relies on manual embedding rules, which does not accord with the actual situation of VNE. In addition, as the use of intelligent learning algorithm to solve the problem of VNE has become a trend, this method is gradually outdated. At the same time, there are some security problems in VNE. However, there is no intelligent algorithm to solve the security problem of VNE. For this reason, this paper proposes a security-aware VNE algorithm based on reinforcement learning (RL). In the training phase, we use a policy network as a learning agent and take the extracted attributes of the substrate nodes to form a feature matrix as input. The learning agent is trained in this environment to get the mapping probability of each substrate node. In the test phase, we map nodes according to the mapping probability and use the breadth-first strategy (BFS) to map links. For the security problem, we add security requirements level constraint for each virtual node and security level constraint for each substrate node. Virtual nodes can only be embedded on substrate nodes that are not lower than the level of security requirements. Experimental results show that the proposed algorithm is superior to other typical algorithms in terms of long-term average return, long-term revenue consumption ratio and virtual network request (VNR) acceptance rate.


翻译:虚拟网络嵌入( VNE) 算法始终是网络虚拟化( NV) 技术中的主要问题。 目前,这个领域的研究仍然有以下问题。 解决 VNE问题的传统方法是使用超自然算法。 但是,这个方法依赖于人工嵌入规则,这与VNE的实际情况不符。 此外,由于使用智能学习算法解决VNE问题已成为一种趋势,这个方法逐渐过时。 同时, VNE也存在一些安全问题。 但是,目前还没有智能算法来解决VNE的安全问题。因此,本文建议使用基于强化学习( RL) 的具有安全意识的VNEVNE算法传统方法。 在培训阶段,我们使用政策网络作为学习代理商,将子节点的提取属性形成功能矩阵作为投入。 学习代理商在这种环境中接受培训,以便获得每个子节点的绘图概率。 在测试阶段,我们根据绘图概率绘制节点,使用宽一战略( BFS) 来提出一个具有安全意识的VNEVNE 算算法的算算算算法, 因此, 只能使用每个虚拟递解算系统递增的固定的系统在安全水平下, 限制下, 度要求中, 我们不会增加一个安全级别, 。 在虚拟递解算算算法的下的安全度要求, 。

0
下载
关闭预览

相关内容

网络嵌入旨在学习网络中节点的低维度潜在表示,所学习到的特征表示可以用作基于图的各种任务的特征,例如分类,聚类,链路预测和可视化。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员