Conformal prediction aims to determine precise levels of confidence in predictions for new objects using past experience. However, the commonly used exchangeable assumptions between the training data and testing data limit its usage in dealing with contaminated testing sets. In this paper, we develop a novel flow-based conformal inference (FCI) method to build predictive sets and infer outliers for complex and high-dimensional data. We leverage ideas from adversarial flow to transfer the input data to a random vector with known distributions. Our roundtrip transformation can map the input data to a low-dimensional space, meanwhile reserving the conditional distribution of input data given each class label, which enables us to construct a non-conformity score for uncertainty quantification. Our approach is applicable and robust when the testing data is contaminated. We evaluate our method, robust flow-based conformal inference, on benchmark datasets. We find that it produces effective predictive sets and accurate outlier detection and is more powerful relative to competing approaches.
翻译:非正式预测的目的是利用过去的经验,确定对预测新物体的准确信任度。然而,培训数据和测试数据之间常用的互换假设限制了培训数据和测试数据在处理受污染的测试组方面的使用。在本文中,我们开发了一种新的基于流动的一致推断方法,用于建立预测数据集和为复杂和高维数据推断出出处。我们利用从对称流的观点将输入数据转移到已知分布的随机矢量。我们的圆柱形转换可以将输入数据映射到一个低维空间,同时保留给每个类标签的有条件输入数据分布,从而使我们能够为不确定性的量化建立一个不兼容性评分。当测试数据受到污染时,我们的方法是适用和稳健的。我们在基准数据集上评估了我们的方法、稳健的基于流动的一致推断。我们发现,它产生有效的预测数据集和准确的外部检测,并且相对于相互竞争的方法而言,它更强大。