This paper introduces a novel motion planning algorithm, incrementally stochastic and accelerated gradient information mixed optimization (iSAGO), for robotic manipulators in a narrow workspace. Primarily, we propose the overall scheme of iSAGO integrating the accelerated and stochastic gradient information for efficient descent in the penalty method. In the stochastic part, we generate the adaptive stochastic moment via the random selection of collision checkboxes, interval time-series, and penalty factor based on Adam to solve the body-obstacle stuck case. Due to the slow convergence of STOMA, we integrate the accelerated gradient and stimulate the descent rate in a Lipschitz constant reestimation framework. Moreover, we introduce the Bayesian tree inference (BTI) method, transforming the whole trajectory optimization (SAGO) into an incremental sub-trajectory optimization (iSAGO) to improve the computational efficiency and success rate. Finally, we demonstrate the key coefficient tuning, benchmark iSAGO against other planners (CHOMP, GPMP2, TrajOpt, STOMP, and RRT-Connect), and implement iSAGO on AUBO-i5 in a storage shelf. The result shows the highest success rate and moderate solving efficiency of iSAGO.
翻译:本文介绍了一个新的运动规划算法(iSAGO),该算法对于在狭窄的工作空间中的机器人操纵者来说是渐进的和加速的梯度信息混合优化(iSAGO),主要提出将加速和随机梯度信息纳入惩罚方法,在惩罚方法中将加速和随机梯度信息整合为高效下降方法。在抽查部分,我们通过随机选择碰撞检查箱、间隔时间序列和惩罚系数来产生适应性随机随机抽查时刻,以亚当为基础,解决身体缺陷悬案。由于STOMA的缓慢融合,我们将加速梯度和下限率纳入利普西茨常数再估测框架。此外,我们引入了巴伊西亚树推断法(BTI),将整个轨迹优化(SAGO)转化为递增分点优化(iSAGO),以提高计算效率和成功率。最后,我们展示了关键系数调整、参照其他规划者(CHOMPO、GMP2、TrajOpt、STOMP和RRT-CON-CON)激励下降率。此外,我们引入了BEO-GSA最高存储率。