We study the classical problem of matching $n$ agents to $n$ objects, where the agents have ranked preferences over the objects. We focus on two popular desiderata from the matching literature: Pareto optimality and rank-maximality. Instead of asking the agents to report their complete preferences, our goal is to learn a desirable matching from partial preferences, specifically a matching that is necessarily Pareto optimal (NPO) or necessarily rank-maximal (NRM) under any completion of the partial preferences. We focus on the top-$k$ model in which agents reveal a prefix of their preference rankings. We design efficient algorithms to check if a given matching is NPO or NRM, and to check whether such a matching exists given top-$k$ partial preferences. We also study online algorithms for eliciting partial preferences adaptively, and prove bounds on their competitive ratio.
翻译:我们研究的是将一美元代理商与一美元对象匹配的传统问题,代理商对一美元对象享有优先排序权。我们侧重于匹配文献中两个流行的偏差:Pareto最佳性和一等最大性。我们的目标不是要求代理商报告其完全偏差,而是从部分偏差中学习一种可取的匹配,具体来说,这种匹配必然是Pareto最佳(NPO),或一定的一等最大(NRM),在部分偏差的任何完成之下。我们侧重于代理商披露其优先排序前缀的上一千美元模式。我们设计高效的算法,检查给定的匹配是否为NPO或NRM,并检查这种匹配是否存在给最高一千美元部分偏差。我们还研究在线算法,以适应性方式获得部分偏差,并证明其竞争比的界限。