A key challenge of infrared small target segmentation (ISTS) is to balance false negative pixels (FNs) and false positive pixels (FPs). Traditional methods combine FNs and FPs into a single objective by weighted sum, and the optimization process is decided by one actor. Minimizing FNs and FPs with the same strategy leads to antagonistic decisions. To address this problem, we propose a competitive game framework (pixelGame) from a novel perspective for ISTS. In pixelGame, FNs and FPs are controlled by different player whose goal is to minimize their own utility function. FNs-player and FPs-player are designed with different strategies: One is to minimize FNs and the other is to minimize FPs. The utility function drives the evolution of the two participants in competition. We consider the Nash equilibrium of pixelGame as the optimal solution. In addition, we propose maximum information modulation (MIM) to highlight the tar-get information. MIM effectively focuses on the salient region including small targets. Extensive experiments on two standard public datasets prove the effectiveness of our method. Compared with other state-of-the-art methods, our method achieves better performance in terms of F1-measure (F1) and the intersection of union (IoU).
翻译:红外小目标分割(ISTS)的一个关键挑战是平衡假的负像素和假的正像素。 传统方法将FN和FP结合成一个加权总和的单一目标,优化过程由一个行为者决定。 将FN和FP最小化以同样的战略最小化导致对抗性决定。 为了解决这一问题, 我们从新的角度为ISTS提出一个竞争性游戏框架( 像素Game) 。 在像素Game、FN和FPs由不同玩家控制,他们的目标是最大限度地减少自己的公用事业功能。 FN- 玩家和FPS- 玩家的设计采用不同的战略: 一个是尽量减少FN,另一个是尽量减少FPS。 公用事业功能驱动着两个参与者的进化。 我们认为像素Game的纳什平衡是最佳解决办法。 此外, 我们提议了最大程度的信息调制(MIM) 以突出提炼油的信息。 MIM 有效地关注突出的区域,包括小目标。 FNPS- Playerner和F- playerner 设计了不同的战略: 一个是最大限度地减少FN和FMS- 方法的广泛实验。