We present a spectral inverse model to estimate a smooth source function from a limited number of observations for an advection-diffusion problem. A standard least-square inverse model is formulated by using a set of Gaussian radial basis functions (GRBF) on a rectangular mesh system. Here, the choice of the collocation points is modeled as a random variable and the generalized polynomial chaos (gPC) expansion is used to represent the random mesh system. It is shown that the convolution of gPC and GRBF provides hierarchical basis functions for a spectral source estimation. We propose a mixed l1 and l2 regularization to exploit the hierarchical nature of the basis polynomials to find a sparse solution. The spectral inverse model has an advantage over the standard least-square inverse model when the number of data is limited. It is shown that the spectral inverse model provides a good estimate of the source function even when the number of unknown parameters (m) is much larger the number of data (n), e.g., m/n > 50.
翻译:我们提出一个光谱反向模型,从数量有限的观测中估计平流扩散问题的光源函数。一个标准的最小反方模型是使用矩形网状系统一组高森半径基函数(GRBF)来制作的。在这里,对合用点的选择是一个随机变量模型,而普遍的多边混乱(gPC)的扩大则用来代表随机网状系统。显示GPC和GRBF的演变为光谱源估计提供了等级基函数。我们建议采用混合的l1和l2的正规化,以利用基础多面模型的等级性质寻找稀薄的解决方案。当数据数量有限时,光谱反向模型比标准最小面反面模型有优势。显示,光谱反模型为源函数提供了良好的估计,即使未知参数(m)的数量比数据(n)大得多,例如, m/n > 50.。