Knowledge Extraction (KE), aiming to extract structural information from unstructured texts, often suffers from data scarcity and emerging unseen types, i.e., low-resource scenarios. Many neural approaches to low-resource KE have been widely investigated and achieved impressive performance. In this paper, we present a literature review towards KE in low-resource scenarios, and systematically categorize existing works into three paradigms: (1) exploiting higher-resource data, (2) exploiting stronger models, and (3) exploiting data and models together. In addition, we highlight promising applications and outline some potential directions for future research. We hope that our survey can help both the academic and industrial communities to better understand this field, inspire more ideas, and boost broader applications.
翻译:知识提取(KE)旨在从非结构化文本中提取结构化信息,但通常面临数据稀缺和出现未知类型的情况(即低资源情境)。许多低资源KE的神经方法已经得到广泛研究,并取得了惊人的表现。在本文中,我们对低资源情境下的KE进行了文献综述,并将现有工作系统地归类为三种范式:(1)利用更高资源的数据、(2)利用更强的模型以及(3)将数据和模型结合在一起。此外,我们还强调有前途的应用,并概述了未来研究的一些潜在方向。我们希望我们的调查可以帮助学术界和工业界更好地了解这个领域,启发更多的想法,并促进更广泛的应用。