Place recognition is an important capability for autonomously navigating vehicles operating in complex environments and under changing conditions. It is a key component for tasks such as loop closing in SLAM or global localization. In this paper, we address the problem of place recognition based on 3D LiDAR scans recorded by an autonomous vehicle. We propose a novel lightweight neural network exploiting the range image representation of LiDAR sensors to achieve fast execution with less than 4 ms per frame. Based on that, we design a yaw-rotation-invariant architecture exploiting a transformer network, which boosts the place recognition performance of our method. We evaluate our approach on the KITTI and Ford Campus datasets. The experimental results show that our method can effectively detect loop closures compared to the state-of-the-art methods and generalizes well across different environments. To further evaluate long-term place recognition performance, we provide a novel challenging Haomo dataset, which contains LiDAR sequences recorded by a mobile robot in repetitive places across seasons. Both the implementation of our method and our new Haomo dataset are released here: https://github.com/haomo-ai/OverlapTransformer
翻译:位置识别是在复杂环境下和不断变化的条件下自主导航车辆的重要能力,是循环关闭 SLAM 或全球本地化等任务的关键组成部分。 在本文件中,我们根据自动飞行器记录的3D LiDAR扫描处理位置识别问题。 我们提议建立一个新型轻量神经网络,利用LIDAR传感器的图像范围,以每架不到4米的速度实现快速执行。 在此基础上,我们设计了一个利用变压器网络的雅aw- 旋转- 变异结构,以提升我们方法的定位性能。 我们评估了我们在KITTI和Ford园区数据集上的方法。 实验结果显示,我们的方法可以有效检测环关闭与最先进的方法相比的情况,并广泛分布在不同环境中。 为了进一步评估长期的识别性能,我们提供了一套具有挑战性的Haomo数据集,其中包含一个移动机器人在整个季节重复性地点记录的LiDAR序列。 我们的方法的实施和我们新的Haomoomo-arvai/Overhabcom的新数据集都在这里发布: https://giustroma/ Overhab.