In this paper we propose an algebraic formalization of connectors in the quantitative setting in order to address the performance issues related with the architectures of component-based systems. For this, we firstly introduce a weighted Algebra of Interactions over a set of ports and a commutative and idempotent semiring. The algebra serves sufficiently for modeling well-known coordination schemes in the weighted setup. In turn, we introduce and study a weighted Algebra of Connectors over a set of ports and a commutative and idempotent semiring, which extends the weighted Algebra of Interactions with types that express two different modes of synchronization, in particular, Rendezvous and Broadcast. Moreover, we show the expressiveness of the algebra by modeling several weighted connectors. Finally, we introduce a congruence relation for weighted connectors and provide conditions for proving congruence between distinct weighted connectors.
翻译:在本文中,我们提议在定量设置中将连接器的代数正规化,以解决与基于组件的系统结构有关的性能问题。 为此,我们首先在一组端口以及一组通量和极能半径上引入一个加权的交互作用代数。代数足以模拟加权设置中众所周知的协调计划。反过来,我们引入并研究一组端口的连接器加权代数以及一种通量和半径半径,它扩展了显示两种不同同步模式,特别是交汇和广播模式的交互作用的加权代数。此外,我们通过对若干加权连接器进行建模,展示了升数的清晰度。最后,我们引入了加权连接器的趋同关系,并为证明不同加权连接器之间的趋同提供了条件。