Introduction: Active commuting has been recommended as a method to increase population physical activity, but evidence is mixed. Social norms related to travel behaviour may influence the uptake of active commuting interventions but are rarely considered in the design and evaluation of interventions. Methods: We developed an agent-based model that incorporates social norms related to travel behaviour and demonstrate the utility of this through implementing car-free Wednesdays. A synthetic population of Waltham Forest, London, UK was generated using a microsimulation approach with data from the UK Census 2011 and UK HLS datasets. An agent-based model was created using this synthetic population which modelled how the actions of peers and neighbours, subculture, habit, weather, bicycle ownership, car ownership, environmental supportiveness, and congestion affect the decision to travel between four modes: walking, cycling, driving, and taking public transport. Results: In the control scenario, the odds of active travel were plausible at 0.091 (89% HPDI: [0.091, 0.091]). Compared to the control scenario, the odds of active travel were increased by 70.3% (89% HPDI: [70.3%, 70.3%]), in the intervention scenario, on non-car-free days; the effect of the intervention is sustained to non-car-free days. Discussion: While these results demonstrate the utility of our agent-based model, rather than aim to make accurate predictions, they do suggest that by there being a 'nudge' of car-free days, there may be a sustained change in active commuting behaviour. The model is a useful tool for investigating the effect of how social networks and social norms influence the effectiveness of various interventions. If configured using real-world built environment data, it may be useful for investigating how social norms interact with the built environment to cause the emergence of commuting conventions.


翻译:积极通勤被推荐为增加人口体育活动的一种方法,但证据不尽相同。与旅行行为有关的社会规范可能会影响积极通勤干预措施的采用,但在设计和评价干预措施时却很少考虑。方法:我们开发了一种基于代理的模型,其中纳入了与旅行行为有关的社会规范,并通过实施无汽车周三展示了这种规范的效用。伦敦的Waltham Forest合成人口使用英国2011年人口普查和英国HLS数据集的数据进行微缩模拟。与控制情景相比,基于代理的模型创建了70.3%(89%)的动态运行、亚文化、习惯、天气、自行车所有权、汽车所有权、环境支持性和拥挤如何影响四种模式之间的旅行决定:步行、骑自行车、驾驶和公共交通。结果:在控制情景中,积极旅行的概率可能为0.091(89%) HPDI:[0.091, 有用模型, 0.091] 。与控制情景相比,积极旅行的概率变化的概率增加了70.3%(89%) 运行网络的准确度、亚速值、70.3 % 运行的动态调查结果是非驱动力的模型。这些工具的模型显示为不持续的状态。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Limits of epidemic prediction using SIR models
Arxiv
0+阅读 · 2022年6月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员