A style mapper applies some fixed style to its input images (so, for example, taking faces to cartoons). This paper describes a simple procedure -- JoJoGAN -- to learn a style mapper from a single example of the style. JoJoGAN uses a GAN inversion procedure and StyleGAN's style-mixing property to produce a substantial paired dataset from a single example style. The paired dataset is then used to fine-tune a StyleGAN. An image can then be style mapped by GAN-inversion followed by the fine-tuned StyleGAN. JoJoGAN needs just one reference and as little as 30 seconds of training time. JoJoGAN can use extreme style references (say, animal faces) successfully. Furthermore, one can control what aspects of the style are used and how much of the style is applied. Qualitative and quantitative evaluation show that JoJoGAN produces high quality high resolution images that vastly outperform the current state-of-the-art.
翻译:样式映射器对其输入图像应用了某种固定样式( 例如, 将脸套到卡通中)。 本文描述一个简单的程序 -- -- JoJoGAN -- -- 从样式的一个示例中学习样式映射器。 JoJoJoGAN 使用GAN Inversion 程序以及样式GAN 的样式混合属性从一个示例样式中生成大量配对数据集。 配对数据集然后用于微调一个样式GAN。 然后, 图像可以由 GAN- Inversion 绘制的样式, 然后由精细调的 StyleGAN 绘制。 JoJoJoGAN 只需要一个参考, 短于30秒的培训时间。 JoJoJoGAN 可以成功使用极端样式引用( 动物脸) 。 此外, 还可以控制样式的哪些方面以及应用多少样式。 定性和定量评估显示, JoJoJoGAN AN 生成的高质量高分辨率图像, 大大超出当前状态的艺术。