项目名称: 面向机器人精度补偿的定位误差相似度机理
项目编号: No.51475225
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 机械、仪表工业
项目作者: 廖文和
作者单位: 南京航空航天大学
项目金额: 80万元
中文摘要: 工业机器人具有重复定位精度较高而绝对定位精度较低的特点,其绝对定位精度无法满足如航空制造等领域的精度要求,因此,研究机器人精度补偿技术至关重要。传统的机器人运动学标定方法具有模型不能完全反映机器人运动状态和要求机器人控制系统具有较高的开放性的缺点。本项目拟使用Monte-Carlo法对机器人在运动空间中的定位误差分布进行分析,证明定位误差相似性的存在,并研究误差相似度的数学表征;基于误差相似度理论,提出一种定位误差快速识别模型和一种基于后置处理的误差补偿模型;为了选择最优采样点,提出一种基于误差相似度的采样点多目标优化模型。上述方法将能够选择最优的采样点,在不修改机器人控制系统参数的前提下,有效提高机器人的绝对定位精度。本项目是对已有精度补偿技术的深入研究与延伸,对于丰富精度补偿理论体系并推进工业机器人在高精度制造领域的应用具有重要意义。
中文关键词: 工业机器人;误差补偿;误差相似度;机器人标定;采样点优化
英文摘要: Industrial robots usually have high repeatablity but low position accuracy. The absolute position accuracy of industrial robots cannot meet the accuracy demand of the aircraft manufacturing. So it is important to study robot calibration technology. The kinematic model built by traditional calibration methods cannot compeletly reflect the real moving state of the robot, and it requires high openess of the robot controll system. This project intends to analyse the robot error distribution in the robot working range based on Monte-Carlo method, to prove the exist of the similarity of position errors, and to study the mathematical representation of the error similarity; Based on the error similarity theory, an error identification model and an error compensation model based on postprocessing are proposed; In order to choose the best configurations,a multi-objective optimization model for optimizing robot configurations based on error similarity is proposed. The methods above can improve the absolute position accuracy of industrial robot with the optimized configurations and without modifying the parameters of the robot's control system. This project is a deeper study and expansion of the robot calibration technology, and has important significance in enriching the calibration theory and promoting robot applications in high accuracy manufacturing.
英文关键词: Industrial robot;Error compensation;Error similarity;Robot calibration;Configuration optimization