In this paper, we expand the methodology presented in Mertens et. al (2020, Biometrical Journal) to the study of life-time (survival) outcome which is subject to censoring and when imputation is used to account for missing values. We consider the problem where missing values can occur in both the calibration data as well as newly - to-be-predicted - observations (validation). We focus on the Cox model. Methods are described to combine imputation with predictive calibration in survival modeling subject to censoring. Application to cross-validation is discussed. We demonstrate how conclusions broadly confirm the first paper which restricted to the study of binary outcomes only. Specifically prediction-averaging appears to have superior statistical properties, especially smaller predictive variation, as opposed to a direct application of Rubin's rules. Distinct methods for dealing with the baseline hazards are discussed when using Rubin's rules-based approaches.


翻译:在本文中,我们将Mertens等人(2020年,《生物计量学杂志》)中介绍的方法扩大到对生命期(生存)结果的研究,该研究须接受审查,而且当估算用于计算缺失的值时。我们考虑了在校准数据以及新到预测的观察(校准)中可能出现缺失值的问题。我们侧重于Cox模型。我们描述了将估算和预测性校准相结合的方法。我们讨论了对交叉校准的应用。我们展示了结论如何广泛证实仅局限于二进制结果研究的第一份文件。具体地说,预测性预测性预测性分析似乎具有较高的统计特性,特别是较小的预测性变化,而不是直接应用Rubin的规则。在使用Rubin的基于规则的方法时,讨论了处理基线危险的独特方法。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
231+阅读 · 2020年12月15日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月29日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员