We consider the problem of inferring high-dimensional data $\mathbf{x}$ in a model that consists of a prior $p(\mathbf{x})$ and an auxiliary differentiable constraint $c(\mathbf{x},\mathbf{y})$ on $x$ given some additional information $\mathbf{y}$. In this paper, the prior is an independently trained denoising diffusion generative model. The auxiliary constraint is expected to have a differentiable form, but can come from diverse sources. The possibility of such inference turns diffusion models into plug-and-play modules, thereby allowing a range of potential applications in adapting models to new domains and tasks, such as conditional generation or image segmentation. The structure of diffusion models allows us to perform approximate inference by iterating differentiation through the fixed denoising network enriched with different amounts of noise at each step. Considering many noised versions of $\mathbf{x}$ in evaluation of its fitness is a novel search mechanism that may lead to new algorithms for solving combinatorial optimization problems.
翻译:我们考虑在一种模型中对高维数据 $\ mathbf{x} 美元进行推论的问题,该模型由先前的 $p (\ mathbf{x}) 美元和辅助的不同限制 $c (\ mathbf{x},\ mathbf{y} 美元组成。 在本文中, 前者是一个经过独立训练的分解扩散基因化模型。 辅助限制预计将有不同的形式, 但可以来自不同的来源。 这种推论将扩散模型转换成插座和播放模块的可能性, 从而允许在使模型适应新的域和任务( 如有条件的生成或图像分割) 方面, 一系列潜在的应用。 扩散模型的结构使我们能够通过固定的分解网络进行分解, 以不同程度的噪音丰富而进行分解, 从而进行大概的推论。 考虑到在评估其是否适合性时, $\ mathf{x} 美元 是一个新颖的搜索机制, 可能导致解决组合问题的新算法。