Recent years have witnessed an increasing number of artificial intelligence (AI) applications in transportation. As a new and emerging technology, AI's potential to advance transportation goals and the full extent of its impacts on the transportation sector is not yet well understood. As the transportation community explores these topics, it is critical to understand how transportation professionals, the driving force behind AI Transportation applications, perceive AI's potential efficiency and equity impacts. Toward this goal, we surveyed transportation professionals in the United States and collected a total of 354 responses. Based on the survey responses, we conducted both descriptive analysis and latent class cluster analysis (LCCA). The former provides an overview of prevalent attitudes among transportation professionals, while the latter allows the identification of distinct segments based on their latent attitudes toward AI. We find widespread optimism regarding AI's potential to improve many aspects of transportation (e.g., efficiency, cost reduction, and traveler experience); however, responses are mixed regarding AI's potential to advance equity. Moreover, many respondents are concerned that AI ethics are not well understood in the transportation community and that AI use in transportation could exaggerate existing inequalities. Through LCCA, we have identified four latent segments: AI Neutral, AI Optimist, AI Pessimist, and AI Skeptic. The latent class membership is significantly associated with respondents' age, education level, and AI knowledge level. Overall, the study results shed light on the extent to which the transportation community as a whole is ready to leverage AI systems to transform current practices and inform targeted education to improve the understanding of AI among transportation professionals.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员