In human-human conversations, Context Tracking deals with identifying important entities and keeping track of their properties and relationships. This is a challenging problem that encompasses several subtasks such as slot tagging, coreference resolution, resolving plural mentions and entity linking. We approach this problem as an end-to-end modeling task where the conversational context is represented by an entity repository containing the entity references mentioned so far, their properties and the relationships between them. The repository is updated turn-by-turn, thus making training and inference computationally efficient even for long conversations. This paper lays the groundwork for an investigation of this framework in two ways. First, we release Contrack, a large scale human-human conversation corpus for context tracking with people and location annotations. It contains over 7000 conversations with an average of 11.8 turns, 5.8 entities and 15.2 references per conversation. Second, we open-source a neural network architecture for context tracking. Finally we compare this network to state-of-the-art approaches for the subtasks it subsumes and report results on the involved tradeoffs.


翻译:在人与人的对话中, " 背景跟踪 " 涉及识别重要实体并跟踪其属性和关系,这是一个具有挑战性的问题,它包含多个子任务,如位置标记、共同参考分辨率、解决多元提及和实体连接等。我们将此问题作为一端到端的建模任务,其对话背景由一个实体库代表,该实体库包含迄今提到的实体参考资料、其属性和它们之间的关系。存储库是不断更新的转弯,从而使得培训和推论的计算效率甚至对于长期对话来说都是有效的。本文件为这一框架的调查打下了两个基础。首先,我们发布了Contract,这是一个大规模的人与人的对话程序,用于对人和地点进行背景跟踪,它包含平均11.8转、5.8个实体和每次对话的15.2个参考。第二,我们为背景跟踪而开源的神经网络架构。最后,我们将这个网络与它所子子任务的最新方法进行比较,并报告相关的交易结果。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月13日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员