Due to wide applications of binary sequences with low correlation to communications, various constructions of such sequences have been proposed in literature. However, most of the known constructions via finite fields make use of the multiplicative cyclic group of $\F_{2^n}$. It is often overlooked in this community that all $2^n+1$ rational places (including "place at infinity") of the rational function field over $\F_{2^n}$ form a cyclic structure under an automorphism of order $2^n+1$. In this paper, we make use of this cyclic structure to provide an explicit construction of families of binary sequences of length $2^n+1$ via the finite field $\F_{2^n}$. Each family of sequences has size $2^n-1$ and its correlation is upper bounded by $\lfloor 2^{(n+2)/2}\rfloor$. Our sequences can be constructed explicitly and have competitive parameters. In particular, compared with the Gold sequences of length $2^n-1$ for even $n$, we have larger length and smaller correlation although the family size of our sequences is slightly smaller.


翻译:由于广泛应用了与通信关系低的二进制序列,文献中提出了各种此类序列的构造。然而,大多数已知的通过有限字段的已知构造利用了多倍循环组合$\F\ ⁇ 2 ⁇ n}美元。在这个社区中,经常忽视的是,合理功能字段中所有2 ⁇ n+1美元的合理位置(包括“无限地点”)超过$\F\ ⁇ 2 ⁇ n}美元,形成一个自动结构,顺序为2 ⁇ n+1美元。在本文中,我们利用这一循环结构,通过有限字段为长度为2 ⁇ n+1美元的双进制序列提供一个明确的构造。每个序列的大小为2 ⁇ 2 ⁇ (n+2+2)/2 ⁇ rld$。我们的序列可以明确构建,并且具有竞争性参数。特别是,与长度为2 ⁇ n-1美元的金序列的长度为2 ⁇ n-1美元,甚至更小一美元,我们每个序列的长度和大小为略小的序列。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月23日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员