We extend Andersson-Madigan-Perlman chain graphs by (i) relaxing the semidirected acyclity constraint so that only directed cycles are forbidden, and (ii) allowing up to two edges between any pair of nodes. We introduce global, and ordered local and pairwise Markov properties for the new models. We show the equivalence of these properties for strictly positive probability distributions. We also show that when the random variables are continuous, the new models can be interpreted as systems of structural equations with correlated errors. This enables us to adapt Pearl's do-calculus to them. Finally, we describe an exact algorithm for learning the new models from observational and interventional data via answer set programming.


翻译:我们扩展了安德森-Madigan-Perlman链条图,方法是:(一) 放松半定向环球限制,只禁止定向周期,以及(二) 允许任何对结点之间的两个边缘。我们引入了全球,并为新模型订购了本地和对称的马尔科夫属性。我们用绝对正概率分布来显示这些属性的等值。我们还显示,当随机变量是连续的时,新模型可以被解释为结构方程系统,带有相关错误。这使我们能够根据它们调整珀尔的计算方法。最后,我们描述了一种精确的算法,用于通过应答组合程序从观测和干预数据中学习新模型。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
专知会员服务
63+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
专知会员服务
63+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员