Network inference aims at unraveling the dependency structure relating jointly observed variables. Graphical models provide a general framework to distinguish between marginal and conditional dependency. Unobserved variables (missing actors) may induce apparent conditional dependencies.In the context of count data, we introduce a mixture of Poisson log-normal distributions with tree-shaped graphical models, to recover the dependency structure, including missing actors. We design a variational EM algorithm and assess its performance on synthetic data. We demonstrate the ability of our approach to recover environmental drivers on two ecological datasets. The corresponding R package is available from github.com/Rmomal/nestor.


翻译:图形模型提供了区分边际和有条件依赖的一般框架。未观察到的变量(缺失的行为体)可能会诱发明显的有条件依赖性。 在计算数据方面,我们引入了将Poisson日志/正常分布与树形图形模型相结合的组合,以恢复依赖性结构,包括缺失的行为体。我们设计了一个变式EM算法,并评估其在合成数据方面的性能。我们展示了我们在两个生态数据集中恢复环境驱动因素的方法的能力。相应的R包可从 Github.com/Rmomal/nestor获得。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【KDD2020教程】多模态网络表示学习
专知会员服务
130+阅读 · 2020年8月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
6+阅读 · 2018年6月20日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员