Network inference aims at unraveling the dependency structure relating jointly observed variables. Graphical models provide a general framework to distinguish between marginal and conditional dependency. Unobserved variables (missing actors) may induce apparent conditional dependencies.In the context of count data, we introduce a mixture of Poisson log-normal distributions with tree-shaped graphical models, to recover the dependency structure, including missing actors. We design a variational EM algorithm and assess its performance on synthetic data. We demonstrate the ability of our approach to recover environmental drivers on two ecological datasets. The corresponding R package is available from github.com/Rmomal/nestor.
翻译:图形模型提供了区分边际和有条件依赖的一般框架。未观察到的变量(缺失的行为体)可能会诱发明显的有条件依赖性。 在计算数据方面,我们引入了将Poisson日志/正常分布与树形图形模型相结合的组合,以恢复依赖性结构,包括缺失的行为体。我们设计了一个变式EM算法,并评估其在合成数据方面的性能。我们展示了我们在两个生态数据集中恢复环境驱动因素的方法的能力。相应的R包可从 Github.com/Rmomal/nestor获得。