Currently, mobile and IoT devices are in dire need of a series of methods to enhance 4K images with limited resource expenditure. The absence of large-scale 4K benchmark datasets hampers progress in this area, especially for dehazing. The challenges in building ultra-high-definition (UHD) dehazing datasets are the absence of estimation methods for UHD depth maps, high-quality 4K depth estimation datasets, and migration strategies for UHD haze images from synthetic to real domains. To address these problems, we develop a novel synthetic method to simulate 4K hazy images (including nighttime and daytime scenes) from clear images, which first estimates the scene depth, simulates the light rays and object reflectance, then migrates the synthetic images to real domains by using a GAN, and finally yields the hazy effects on 4K resolution images. We wrap these synthesized images into a benchmark called the 4K-HAZE dataset. Specifically, we design the CS-Mixer (an MLP-based model that integrates \textbf{C}hannel domain and \textbf{S}patial domain) to estimate the depth map of 4K clear images, the GU-Net to migrate a 4K synthetic image to the real hazy domain. The most appealing aspect of our approach (depth estimation and domain migration) is the capability to run a 4K image on a single GPU with 24G RAM in real-time (33fps). Additionally, this work presents an objective assessment of several state-of-the-art single-image dehazing methods that are evaluated using the 4K-HAZE dataset. At the end of the paper, we discuss the limitations of the 4K-HAZE dataset and its social implications.


翻译:目前,移动设备和物联网设备迫切需要一系列在有限资源开销下增强4K图像的方法。缺乏大规模的4K基准数据集阻碍了这一领域的进展,特别是在去雾方面。构建超高清(UHD)去雾数据集的挑战是没有UHD深度图的估计方法,高质量的4K深度估计数据集,以及从合成到真实领域的UHD雾图像的迁移策略。为解决这些问题,我们开发了一种新颖的合成方法来模拟4K有雾图像(包括夜间和白天场景),首先估计场景深度,模拟光线和物体反射,然后使用GAN将合成图像迁移至真实领域,并最终在4K分辨率图像上产生有雾效果。我们将这些合成图像打包成一个称为4K-HAZE数据集的基准。具体而言,我们设计了CS-Mixer (一种基于MLP的模型,集成了通道域和空间域) 来估计4K清晰图像的深度图,GU-Net将4K合成图像迁移到真实的雾域。我们方法最吸引人的方面(深度估计和领域迁移)是在单个拥有24G RAM的GPU上实时运行4K图像的能力(33fps)。此外,本文提供了使用4K-HAZE数据集评估多种最新的单图像去雾方法的客观评估。最后,我们讨论了4K-HAZE数据集的局限性及其社会影响。

0
下载
关闭预览

相关内容

【CVPR2022】端到端实时矢量边缘提取(E2EC)
专知会员服务
15+阅读 · 2022年4月14日
《深度学习HDR成像》综述论文
专知会员服务
27+阅读 · 2021年12月14日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
CVPR 2020 论文大盘点-图像增强与图像恢复篇
计算机视觉life
36+阅读 · 2020年7月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
16+阅读 · 2021年1月27日
VIP会员
相关VIP内容
【CVPR2022】端到端实时矢量边缘提取(E2EC)
专知会员服务
15+阅读 · 2022年4月14日
《深度学习HDR成像》综述论文
专知会员服务
27+阅读 · 2021年12月14日
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员