We derive novel error estimates for Hybrid High-Order (HHO) discretizations of Leray-Lions problems set in W^(1,p) with p in (1,2]. Specifically, we prove that, depending on the degeneracy of the problem, the convergence rate may vary between (k+1)(p-1) and (k+1), with k denoting the degree of the HHO approximation. These regime-dependent error estimates are illustrated by a complete panel of numerical experiments.
翻译:我们得出了W ⁇ (1,1,p)和p (1,2)中W ⁇ (1,1,p)中设定的列伊-Lion问题混合高分机(HHO)的新误差估计值。 具体地说,我们证明,视问题的变异性,在(k+1)(p-1)和(k+1)之间,趋同率可能有所不同,并标明HHO近似度的程度。 完整的数字实验小组可以说明这些由系统决定的误差估计值。