In this paper, we draw attention to a promising yet slightly underestimated measure of variability - the Gini coefficient. We describe two new ways of defining and interpreting this parameter. Using our new representations, we compute the Gini index for a few probability distributions and describe it in more detail for the negative binomial distribution. We also suggest the latter as a tool to measure overdispersion in epidemiology.
翻译:在本文中,我们提请注意一种有希望但被略微低估的可变性计量方法,即基尼系数。我们描述了界定和解释这一参数的两种新方式。我们用我们的新表述方式计算吉尼指数的几种概率分布,并更详细地描述负二元分布。我们还建议将后者作为衡量流行病学过度分布的工具。