Guessing Random Additive Noise Decoding (GRAND) is a universal decoding algorithm that has been recently proposed as a practical way to perform maximum likelihood decoding. It generates a sequence of possible error patterns and applies them to the received vector, checking if the result is a valid codeword. Ordered reliability bits GRAND (ORBGRAND) improves on GRAND by considering soft information received from the channel. Both GRAND and ORBGRAND have been implemented in hardware, focusing on average performance, sacrificing worst case throughput and latency. In this work, an improved pattern schedule for ORBGRAND is proposed. It provides $>0.5$dB gain over the standard schedule at a block error rate $\le 10^{-5}$, and outperforms more complex GRAND flavors with a fraction of the complexity. The proposed schedule is used within a novel code-agnositic decoder architecture: the decoder guarantees fixed high throughput and low latency, making it attractive for latency-constrained applications. It outperforms the worst-case performance of decoders by orders of magnitude, and outperforms many best-case figures. Decoding a code of length 128, it achieves a throughput of $79.21$Gb/s with $58.49$ns latency, and of $69.61$Gb/s with $40.58$ns latency, yielding better energy efficiency and comparable area efficiency with respect to the state of the art.


翻译:随机猜测添加新杂音解码( GRAND) 是一种通用解码算法, 最近作为实现最大可能的解码的实用方法, 被推荐为一种通用解码算法 。 它生成了一系列可能的错误模式, 并将其应用到接收的矢量上, 检查结果是否是一个有效的编码词。 排序的可靠性比特GRAND( ORBGRAND) 通过考虑从频道收到的软信息来改善GRAND 。 GRAND 和 ORBGRAND 都在硬件中实施, 重点是平均性能, 牺牲最差的过量和延缓度。 在这项工作中, 提出了 ORBGRAND 的改进模式表。 它以块错误率 $> > 0.5 dB 的速率超过标准表, 并且比重为$1049- 5 5 美元, 优于更复杂的 GRAND 口味。 拟议的时间表在一个新型的编码结构中使用: 解码保证固定的通量和低的通度, 使LEPER 应用程序具有吸引力。 它比最差的性性性性性, $21美元, 的性 的性性 的性能性能性能性能, 以28GDERDER 值 值 的值 的值 值 的值 的值 的值 的值 值 值, 值 值, 的值 值 值 的值, 的值 的值 的值 的值 。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | Decoders 对于语义分割的重要性
极市平台
6+阅读 · 2019年3月19日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
从Seq2seq到Attention模型到Self Attention(二)
量化投资与机器学习
23+阅读 · 2018年10月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
4+阅读 · 2015年8月25日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | Decoders 对于语义分割的重要性
极市平台
6+阅读 · 2019年3月19日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
从Seq2seq到Attention模型到Self Attention(二)
量化投资与机器学习
23+阅读 · 2018年10月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员