Li and Panigrahi, in recent work, obtained the first deterministic algorithm for the global minimum cut of a weighted undirected graph that runs in time $o(mn)$. They introduced an elegant and powerful technique to find isolating cuts for a terminal set in a graph via a small number of $s$-$t$ minimum cut computations. In this paper we generalize their isolating cut approach to the abstract setting of symmetric bisubmodular functions (which also capture symmetric submodular functions). Our generalization to bisubmodularity is motivated by applications to element connectivity and vertex connectivity. Utilizing the general framework and other ideas we obtain significantly faster randomized algorithms for computing global (and subset) connectivity in a number of settings including hypergraphs, element connectivity and vertex connectivity in graphs, and for symmetric submodular functions.
翻译:Li Panigrahi和Li Panigrahi最近的工作获得了第一个全球最低限加权非定向图的确定式算法,该算法在时间上运行,用美元(mn)美元运行。他们采用了一种优雅而有力的技术,通过少量的美元(t)美元(t)最低量计算,为图中的终端集寻找孤立的切除。在本文中,我们将其孤立的切除法概括为对称双极元函数的抽象设置(也包含对称子模块函数 ) 。 我们向二元模式的概括化的动机是应用元素连通性和顶点连通性。 利用一般框架和其他想法,我们获取了快速快速的随机算法, 用于计算全球( 和子) 连接性连接性, 包括超直线、 元素连通性和顶端点在图形中的连接性连接性, 以及对称子模块功能 。