We develop fast approximation algorithms for the minimum-cost version of the Bounded-Degree MST problem (BD-MST) and its generalization the Crossing Spanning Tree problem (Crossing-ST). We solve the underlying LP to within a $(1+\epsilon)$ approximation factor in near-linear time via the multiplicative weight update (MWU) technique. This yields, in particular, a near-linear time algorithm that outputs an estimate $B$ such that $B \le B^* \le \lceil (1+\epsilon)B \rceil +1$ where $B^*$ is the minimum-degree of a spanning tree of a given graph. To round the fractional solution, in our main technical contribution, we describe a fast near-linear time implementation of swap-rounding in the spanning tree polytope of a graph. The fractional solution can also be used to sparsify the input graph that can in turn be used to speed up existing combinatorial algorithms. Together, these ideas lead to significantly faster approximation algorithms than known before for the two problems of interest. In addition, a fast algorithm for swap rounding in the graphic matroid is a generic tool that has other applications, including to TSP and submodular function maximization.
翻译:我们为MST问题(BD-MST)的最小成本版本开发快速近似算法(快速近似算法 ), 以及它一般化的交叉树问题( 交叉树问题 ) 。 我们通过倍增重量更新( MWU) 技术, 在近线时间里将基础LP 解解到$( 1 ⁇ epsilon) 近似系数之内 。 特别是, 产生一个近线性时间算法, 该算法可以输出一个美元为B$B\le B ⁇ \ \ le le lceil ( 1 ⁇ epsil) B\ rceil +1$, 其中$B ⁇ +1$ 是特定图树的最小范围。 我们通过我们的主要技术贡献, 将点解分数解决方案在近线性系数内解决 。 我们描述一个近线性互换时间的快速执行, 在图的树多功能中进行。 分数解算法解算法也可以用来对输入的图形图进行增缩, 从而加速现有梳理算算算算算算算算算算算算算算算算算算算算算算算算算算算算法。 共同, 这些想法导致快速的快速转换算算算算算算算算算算算算法, 。