Building ethical machines may involve bestowing upon them the emotional capacity to self-evaluate and repent on their actions. While reparative measures, such as apologies, are often considered as possible strategic interactions, the explicit evolution of the emotion of guilt as a behavioural phenotype is not yet well understood. Here, we study the co-evolution of social and non-social guilt of homogeneous or heterogeneous populations, including well-mixed, lattice and scale-free networks. Socially aware guilt comes at a cost, as it requires agents to make demanding efforts to observe and understand the internal state and behaviour of others, while non-social guilt only requires the awareness of the agents' own state and hence incurs no social cost. Those choosing to be non-social are however more sensitive to exploitation by other agents due to their social unawareness. Resorting to methods from evolutionary game theory, we study analytically, and through extensive numerical and agent-based simulations, whether and how such social and non-social guilt can evolve and deploy, depending on the underlying structure of the populations, or systems, of agents. The results show that, in both lattice and scale-free networks, emotional guilt prone strategies are dominant for a larger range of the guilt and social costs incurred, compared to the well-mixed population setting, leading therefore to significantly higher levels of cooperation for a wider range of the costs. In structured population settings, both social and non-social guilt can evolve and deploy through clustering with emotional prone strategies, allowing them to be protected from exploiters, especially in case of non-social (less costly) strategies. Overall, our findings provide important insights into the design and engineering of self-organised and distributed cooperative multi-agent systems.


翻译:道德机器的建立可能涉及赋予他们自我评估和对自己的行为进行忏悔的情感能力; 虽然道歉等补偿措施往往被视为可能的战略互动,但人们尚未充分理解内疚情绪作为行为型苯型的明显演变; 我们在这里研究同质或异质人群的社会和非社会内疚的共同演化,包括混合、不固定和规模化的网络; 社会认识内疚是代价高昂的,因为它要求代理人作出艰巨的努力,以观察和理解他人的内部状态和行为,而非社会内疚则往往被视为可能的战略互动,因此,非社会内疚往往要求代理人本身了解自身状况,因此不产生社会成本。 然而,那些选择非社会内疚情绪的人,由于社会意识不明,对他人的利用更加敏感。 重新研究进化游戏理论中的方法,我们进行分析,通过广泛的数字和代理模拟,是否和如何使这种社会和非社会内疚演变演变演变演变,取决于人口、系统或代理人的内在结构结构、非社会内疚状况,结果表明,在不固定和规模化的网络中,从不固定的内脏和规模上,从结构内分层内分层的内分层的内分层的内脏,从较大幅度的内疚的内疚和结构内分层内分层内分层的内分层的内分层的内分层的内分层的内分层的内分层内分层的内分层内乱到较。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月12日
Arxiv
0+阅读 · 2023年4月11日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员