Human behavior is conditioned by codes and norms that constrain action. Rules, ``manners,'' laws, and moral imperatives are examples of classes of constraints that govern human behavior. These systems of constraints are ``messy:'' individual constraints are often poorly defined, what constraints are relevant in a particular situation may be unknown or ambiguous, constraints interact and conflict with one another, and determining how to act within the bounds of the relevant constraints may be a significant challenge, especially when rapid decisions are needed. Despite such messiness, humans incorporate constraints in their decisions robustly and rapidly. General, artificially-intelligent agents must also be able to navigate the messiness of systems of real-world constraints in order to behave predictability and reliably. In this paper, we characterize sources of complexity in constraint processing for general agents and describe a computational-level analysis for such \textit{constraint compliance}. We identify key algorithmic requirements based on the computational-level analysis and outline an initial, exploratory implementation of a general approach to constraint compliance.


翻译:人类行为受到约束的规范和规则。规则、“礼仪”、法律和道德义务是一些规范行为的例子。这些约束系统是“混乱的”:单个约束通常定义不清,确定在特定情况下哪些约束具有相关性可能是未知或模糊的,约束相互作用和冲突,以及在相关约束范围内行事可能是一个重要的挑战,特别是在需要快速做决策的情况下。尽管存在这样的混乱,人类还是能够快速、可靠地考虑约束因素来做出决策。通用的人工智能代理也必须能够处理实际约束系统的混乱,以便能够预测和可靠地行事。在本文中,我们为通用代理的约束符合性特征化复杂性来源,并描述了一种约束符合性的计算层次分析。我们根据计算级别分析确定了关键算法要求,并概述了约束符合性的通用方法的初步探索性实现。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
CCF-TF 智能媒体计算国际研讨会
专知
0+阅读 · 2022年5月25日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
32+阅读 · 2022年5月23日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
CCF-TF 智能媒体计算国际研讨会
专知
0+阅读 · 2022年5月25日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员