In this paper, we present algorithms for synthesizing controllers to distribute a group (possibly swarms) of homogeneous robots (agents) over heterogeneous tasks which are operated in parallel. We present algorithms as well as analysis for global and local-feedback-based controller for the swarms. Using ergodicity property of irreducible Markov chains, we design a controller for global swarm control. Furthermore, to provide some degree of autonomy to the agents, we augment this global controller by a local feedback-based controller using Language measure theory. We provide analysis of the proposed algorithms to show their correctness. Numerical experiments are shown to illustrate the performance of the proposed algorithms.
翻译:在本文中, 我们展示了合成控制器的算法, 用于将同质机器人( 试剂) 组( 可能成群 ) 分配到平行操作的不同任务上。 我们展示了算法, 并分析了全球和地方- 后退控制器的算法。 使用不可减少的 Markov 链的异端属性, 我们设计了一个控制器来控制全球 群。 此外, 为了给代理器提供某种程度的自主性, 我们用一个基于语言测量理论的反馈控制器来增强这个全球控制器。 我们提供了对拟议算法的分析, 以显示其正确性。 数字实验展示了拟议算法的性能 。