Recent empirical work on stochastic gradient descent (SGD) applied to over-parameterized deep learning has shown that most gradient components over epochs are quite small. Inspired by such observations, we rigorously study properties of Truncated SGD (T-SGD), that truncates the majority of small gradient components to zeros. Considering non-convex optimization problems, we show that the convergence rate of T-SGD matches the order of vanilla SGD. We also establish the generalization error bound for T-SGD. Further, we propose Noisy Truncated SGD (NT-SGD), which adds Gaussian noise to the truncated gradients. We prove that NT-SGD has the same convergence rate as T-SGD for non-convex optimization problems. We demonstrate that with the help of noise, NT-SGD can provably escape from saddle points and requires less noise compared to previous related work. We also prove that NT-SGD achieves better generalization error bound compared to T-SGD because of the noise. Our generalization analysis is based on uniform stability and we show that additional noise in the gradient update can boost the stability. Our experiments on a variety of benchmark datasets (MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100) with various networks (VGG and ResNet) validate the theoretical properties of NT-SGD, i.e., NT-SGD matches the speed and accuracy of vanilla SGD while effectively working with sparse gradients, and can successfully escape poor local minima.


翻译:最近对超度深层学习应用的悬浮梯度梯度下沉(SGD)的经验性工作表明,跨时代的梯度部分大多相当小。在这种观察的启发下,我们严格地研究SGD(T-SGD)的特性,将大多数小梯度部分挤到零;考虑到非Convex优化问题,我们表明,T-SGD的趋同率与香草SGD的顺序相符。我们还为T-SGD定了一个普遍化错误。此外,我们提议,SGD(NT-SGD)的流行性调整性 SGD(NT-SGD)的精确性能使高斯氏的噪音添加到疏松动梯度。我们证明,NTSGD的趋同率与TSGD(T-SGD)的趋同率(T-SGD)的趋同率(TGGD(T-SG)的精确性能比TGD(ND(ND-SG-SG)的精确性差错。我们关于SGR(GR-GR-GR)的精确度和SLIDRLID(S-GR)的精确性变新的稳定性分析,我们关于S-GLILM)的更稳定性能的更近的精确性能和CLILILILILD(我们关于S-CR)的精确性能能的比,我们关于S-CR)的精确性能和CR)的精确性能的精确性能的精确性能。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员