With the underlying aim of increasing efficiency of computational modelling pertinent for managing & protecting the Great Barrier Reef, we perform a preliminary investigation on the use of deep neural networks for opportunistic model emulation of APSIM models by repurposing an existing large dataset containing outputs of APSIM model runs. The dataset has not been specifically tailored for the model emulation task. We employ two neural network architectures for the emulation task: densely connected feed-forward neural network (FFNN), and gated recurrent unit feeding into FFNN (GRU-FFNN), a type of a recurrent neural network. Various configurations of the architectures are trialled. A minimum correlation statistic is used to identify clusters of APSIM scenarios that can be aggregated to form training sets for model emulation. We focus on emulating 4 important outputs of the APSIM model: runoff, soil_loss, DINrunoff, Nleached. The GRU-FFNN architecture with three hidden layers and 128 units per layer provides good emulation of runoff and DINrunoff. However, soil_loss and Nleached were emulated relatively poorly under a wide range of the considered architectures; the emulators failed to capture variability at higher values of these two outputs. While the opportunistic data available from past modelling activities provides a large and useful dataset for exploring APSIM emulation, it may not be sufficiently rich enough for successful deep learning of more complex model dynamics. Design of Computer Experiments may be required to generate more informative data to emulate all output variables of interest. We also suggest the use of synthetic meteorology settings to allow the model to be fed a wide range of inputs. These need not all be representative of normal conditions, but can provide a denser, more informative dataset from which complex relationships between input and outputs can be learned.


翻译:其根本目标是提高用于管理和保护大堡礁的计算模型的效率,因此,我们对利用深神经网络进行初步调查,以便利用深神经网络进行机会模型模拟APSIM模型模型。重新定位含有APSIM模型运行输出的现有大型数据集。该数据集没有专门为模型模拟任务定制。我们为模拟任务采用了两个神经网络结构结构:连接密接通的进化前神经网络(FFNN)和连接到FFFNN(GRU-FFNNN)的封闭式经常单元,这是一种经常性的神经网络。对各种结构结构的配置进行了试验,以寻找包含APSIM模型运行模型运行输出输出的现有大型数据集。我们侧重于模拟模型模型的4项重要产出:运行、土壤损失、DINrunoff、Nleached模型。GRU-FFNN结构中包含三个隐藏的高级层,但每个层之间有128个单元,可以很好地模拟运行和DIMrunoffer。然而,土壤损失和NBLLL的模型中的现有大量数据流流数据流到模型中可以提供。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
5+阅读 · 2020年8月28日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2021年11月19日
Arxiv
5+阅读 · 2020年8月28日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
5+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员