Groundwater flow model accuracy is often limited by the uncertainty in model parameters that characterize aquifer properties and aquifer recharge. Aquifer properties such as hydraulic conductivity can have an uncertainty spanning orders of magnitude. Meanwhile, parameters used to configure model boundary conditions can introduce additional uncertainty. In this study, the Morris Method sensitivity analysis is performed on multiple quantities of interest to assess the sensitivity of a steady-state groundwater flow model to uncertain input parameters. The Morris Method determines which of these parameters are less influential on model outputs. Uninfluential parameters can be set constant during subsequent parameter optimization to reduce computational expense. Combining multiple quantities of interest (e.g., RMSE, groundwater fluxes) when performing both the Morris Method and parameter optimization offers a more complete assessment of groundwater models, providing a more reliable and physically consistent estimate of uncertain parameters. The parameter optimization procedure also provides us an estimate of the residual uncertainty in the parameter values, resulting in a more complete estimate of the remaining uncertainty. By employing such techniques, the current study was able to estimate the aquifer hydraulic conductivity and recharge rate due to rice field irrigation in a groundwater basin in Northern Italy, revealing that a significant proportion of surficial aquifer recharge (approximately 81-94%) during the later summer is due to the flood irrigation practices applied to these fields.
翻译:水力传导学等含水层特性和含水层补给量等含水层特性的不确定性往往限制了地下水模型的准确性。与此同时,用于配置示范边界条件的参数可能带来更多的不确定性。在本研究中,莫里斯方法敏感度分析是针对多种兴趣进行的,目的是评估稳定状态地下水流模型对不确定输入参数的敏感性。莫里斯方法确定这些参数中哪些参数对模型产出影响较小。在随后的参数优化过程中,可以设定非含蓄参数,以减少计算费用。在进行莫里斯方法和参数优化时,将多种利益(如RUSE、地下水通量)结合起来,可以对地下水模型进行更完整的评估,对不确定参数作出更可靠、更实际一致的估计。参数优化程序还向我们提供了参数值剩余不确定性的估计,从而更全面地估计剩余不确定性。通过采用这种技术,目前的研究能够估计由于意大利北部地下水流域水稻田灌溉而导致的含水层水流传水的传导和补给率。在进行这一研究时,对地下水模型进行了更完整的评估,揭示了地下水模型在夏季的灌溉中应用了相当大的比例。