Groundwater flow model accuracy is often limited by the uncertainty in model parameters that characterize aquifer properties and aquifer recharge. Aquifer properties such as hydraulic conductivity can have an uncertainty spanning orders of magnitude. Meanwhile, parameters used to configure model boundary conditions can introduce additional uncertainty. In this study, the Morris Method sensitivity analysis is performed on multiple quantities of interest to assess the sensitivity of a steady-state groundwater flow model to uncertain input parameters. The Morris Method determines which of these parameters are less influential on model outputs. Uninfluential parameters can be set constant during subsequent parameter optimization to reduce computational expense. Combining multiple quantities of interest (e.g., RMSE, groundwater fluxes) when performing both the Morris Method and parameter optimization offers a more complete assessment of groundwater models, providing a more reliable and physically consistent estimate of uncertain parameters. The parameter optimization procedure also provides us an estimate of the residual uncertainty in the parameter values, resulting in a more complete estimate of the remaining uncertainty. By employing such techniques, the current study was able to estimate the aquifer hydraulic conductivity and recharge rate due to rice field irrigation in a groundwater basin in Northern Italy, revealing that a significant proportion of surficial aquifer recharge (approximately 81-94%) during the later summer is due to the flood irrigation practices applied to these fields.


翻译:水力传导学等含水层特性和含水层补给量等含水层特性的不确定性往往限制了地下水模型的准确性。与此同时,用于配置示范边界条件的参数可能带来更多的不确定性。在本研究中,莫里斯方法敏感度分析是针对多种兴趣进行的,目的是评估稳定状态地下水流模型对不确定输入参数的敏感性。莫里斯方法确定这些参数中哪些参数对模型产出影响较小。在随后的参数优化过程中,可以设定非含蓄参数,以减少计算费用。在进行莫里斯方法和参数优化时,将多种利益(如RUSE、地下水通量)结合起来,可以对地下水模型进行更完整的评估,对不确定参数作出更可靠、更实际一致的估计。参数优化程序还向我们提供了参数值剩余不确定性的估计,从而更全面地估计剩余不确定性。通过采用这种技术,目前的研究能够估计由于意大利北部地下水流域水稻田灌溉而导致的含水层水流传水的传导和补给率。在进行这一研究时,对地下水模型进行了更完整的评估,揭示了地下水模型在夏季的灌溉中应用了相当大的比例。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员