Importance: Emergency department (ED) returns for mental health conditions pose a major healthcare burden, with 24-27% of patients returning within 30 days. Traditional machine learning models for predicting these returns often lack interpretability for clinical use. Objective: To assess whether integrating large language models (LLMs) with machine learning improves predictive accuracy and clinical interpretability of ED mental health return risk models. Methods: This retrospective cohort study analyzed 42,464 ED visits for 27,904 unique mental health patients at an academic medical center in the Deep South from January 2018 to December 2022. Main Outcomes and Measures: Two primary outcomes were evaluated: (1) 30-day ED return prediction accuracy and (2) model interpretability using a novel LLM-enhanced framework integrating SHAP (SHapley Additive exPlanations) values with clinical knowledge. Results: For chief complaint classification, LLaMA 3 (8B) with 10-shot learning outperformed traditional models (accuracy: 0.882, F1-score: 0.86). In SDoH classification, LLM-based models achieved 0.95 accuracy and 0.96 F1-score, with Alcohol, Tobacco, and Substance Abuse performing best (F1: 0.96-0.89), while Exercise and Home Environment showed lower performance (F1: 0.70-0.67). The LLM-based interpretability framework achieved 99% accuracy in translating model predictions into clinically relevant explanations. LLM-extracted features improved XGBoost AUC from 0.74 to 0.76 and AUC-PR from 0.58 to 0.61. Conclusions and Relevance: Integrating LLMs with machine learning models yielded modest but consistent accuracy gains while significantly enhancing interpretability through automated, clinically relevant explanations. This approach provides a framework for translating predictive analytics into actionable clinical insights.
翻译:暂无翻译