Gait, i.e., the movement pattern of human limbs during locomotion, is a promising biometric for the identification of persons. Despite significant improvement in gait recognition with deep learning, existing studies still neglect a more practical but challenging scenario -- unsupervised cross-domain gait recognition which aims to learn a model on a labeled dataset then adapts it to an unlabeled dataset. Due to the domain shift and class gap, directly applying a model trained on one source dataset to other target datasets usually obtains very poor results. Therefore, this paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition. To learn effective prior knowledge for gait representation, we first adopt a backbone network pre-trained on the labeled source data in a supervised manner. Then we design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space. During training, the class consistency indicator is adopted to select confident neighborhoods of samples based on their entropy measurements. Moreover, we explore a high-entropy-first neighbor selection strategy, which can effectively transfer prior knowledge to the target domain. Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.


翻译:Gait,即人体肢体在移动期间的移动模式,是识别人员的一种很有希望的生物鉴别方法。尽管通过深层学习在行为识别方面有了显著改进,但现有的研究仍然忽略了一个更加实际但富有挑战性的情景 -- -- 未经监督的跨场域识别,其目的是在标签数据集上学习一个模型,然后在标签源码上对其进行预先培训,然后将其调整为未标签数据集。由于域变换和阶级差距,直接将经过培训的一个源数据集模型应用到其他目标数据集通常获得非常差的结果。因此,本文件建议建立一个可转移的邻里发现(TraND)框架,以弥补不受监督的跨场域识别的域差距。为了在之前了解关于图谱代表的有效知识,我们首先采用一个主干网网络,然后以监督的方式对标签源码数据进行测试。然后我们设计一个端对端到端的训练方法,以便自动发现隐蔽空间中未标签样本的周边区域。在培训期间,将采用课堂一致性指标,以便选择基于其植根基盘测量的样本的周边区域,从而有效地实现前目标域战略的高级结果。此外,我们探索了一种高端区域选择了一种高端选择方法。我们可以选择了一种方法,可以实现前的域域选择。我们的方法,可以实现。我们方域选择了一种目标域选择了一种高端域战略。我们的方法,可以实现。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员