Large language models (LLMs) are increasingly deployed in multilingual, real-world applications with user inputs -- naturally introducing typographical errors (typos). Yet most benchmarks assume clean input, leaving the robustness of LLMs to typos across languages largely underexplored. To address this gap, we introduce MulTypo, a multilingual typo generation algorithm that simulates human-like errors based on language-specific keyboard layouts and typing behavior. We evaluate 18 open-source LLMs across three model families and five downstream tasks spanning language inference, multi-choice question answering, mathematical reasoning, and machine translation tasks. Our results show that typos consistently degrade performance, particularly in generative tasks and those requiring reasoning -- while the natural language inference task is comparatively more robust. Instruction tuning improves clean-input performance but may increase brittleness under noise. We also observe language-dependent robustness: high-resource languages are generally more robust than low-resource ones, and translation from English is more robust than translation into English. Our findings underscore the need for noise-aware training and multilingual robustness evaluation. We make our code and data publicly available.
翻译:暂无翻译