Data mixing strategies (e.g., CutMix) have shown the ability to greatly improve the performance of convolutional neural networks (CNNs). They mix two images as inputs for training and assign them with a mixed label with the same ratio. While they are shown effective for vision transformers (ViTs), we identify a token fluctuation phenomenon that has suppressed the potential of data mixing strategies. We empirically observe that the contributions of input tokens fluctuate as forward propagating, which might induce a different mixing ratio in the output tokens. The training target computed by the original data mixing strategy can thus be inaccurate, resulting in less effective training. To address this, we propose a token-label alignment (TL-Align) method to trace the correspondence between transformed tokens and the original tokens to maintain a label for each token. We reuse the computed attention at each layer for efficient token-label alignment, introducing only negligible additional training costs. Extensive experiments demonstrate that our method improves the performance of ViTs on image classification, semantic segmentation, objective detection, and transfer learning tasks. Code is available at: https://github.com/Euphoria16/TL-Align.
翻译:数据混合战略(例如, CutMix) 显示有能力大大改善进化神经网络(CNNs)的性能。它们将两幅图像混在一起作为培训投入,并配以同一比例的混合标签。虽然它们被显示对视觉变压器(VITs)有效,但我们发现一种象征性波动现象,抑制了数据混合战略的潜力。我们从经验中观察到,输入符号的贡献随着前向传播而波动,这可能导致输出符号中的混合比例不同。由原始数据混合战略计算的培训目标可能不准确,导致培训效果较差。为了解决这个问题,我们提议一种象征性标签对齐(TL-Aleign)方法,以追踪转换的符号和原始符号之间的通信,以维持每个符号的标签。我们重新利用每一层的计算注意力,以便有效地核对代号标签,只增加微不足道的额外培训费用。广泛的实验表明,我们的方法在图像分类、语义分解、客观检测和转移学习任务方面提高了Vits的性能。代码可以在以下网址上找到: http://github./Ehoup16。